Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Flag flutter frequently features a marked difference between the onset speed of flutter and the speed below which flutter stops. The hysteresis tends to be especially large in experiments as opposed to simulations. This phenomenon has been ascribed to inherent imperfections of flatness in experimental samples, which are thought to inhibit the onset of flutter but have a lesser effect once a flag is already fluttering. In this work, we present an experimental confirmation for this explanation through motion tracking. We also visualize the wake to assess the potential contribution of discrete vortex shedding to hysteresis. We then mould our understanding of the mechanism of bistability and additional observations on flag flutter into a novel, observation-based, semiempirical model for flag flutter in the form of a single ordinary differential equation. Despite its simplicity, the model successfully reproduces key features of the physical system such as bistability, sudden transitions between non-fluttering and fluttering states, amplitude growth and frequency growth.more » « lessFree, publicly-accessible full text available October 25, 2026
-
A new method for fluid–structure interaction (FSI) diagnostics to simultaneously capture time-resolved three-dimensional, three-component (3D3C) velocity fields and structural deformations using a single light field camera is presented. A light field camera encodes both spatial and angular information of light rays collected by a conventional imaging lens that allows for the 3D reconstruction of a scene from a single image. Building upon this capability, a light field fluid–structure interaction (LF FSI) methodology is developed with a focus on experimental scenarios with low optical access. Proper orthogonal decomposition (POD) is used to separate particle and surface information contained in the same image. A correlation-based depth estimation technique is introduced to reconstruct instantaneous surface positions from the disparity between angular perspectives and conventional particle image velocimetry (PIV) is used for flow field reconstruction. Validation of the methodology is achieved using synthetic images of simultaneously moving flat plates and a vortex ring with a small increase in uncertainty under ~0.5 microlenses observed in both flow and structure measurement compared to independent measurements. The method is experimentally verified using a flat plate translating along the camera’s optical axis in a flow field with varying particle concentrations. Finally, simultaneous reconstructions of the flow field and surface shape around a flexible membrane are presented, with the surface reconstruction further validated using simultaneously captured stereo images. The findings indicate that the LF FSI methodology provides a new capability to simultaneously measure large-scale flow characteristics and structural deformations using a single camera.more » « lessFree, publicly-accessible full text available October 1, 2026
-
The interactions between fluid flow and structural components of collapsible tubes are representative of those in several physiological systems. Although extensively studied, there exists a lack of characterization of the three-dimensionality in the structural deformations of the tube and its influence on the flow field. This experimental study investigates the spatio-temporal relationship between 3D tube geometry and the downstream flow field under conditions of fully open, closed, and slamming-type oscillating regimes. A methodology is implemented to simultaneously measure three-dimensional surface deformations in a collapsible tube and the corresponding downstream flow field. Stereophotogrammetry was used to measure tube deformations, and simultaneous flow field measurements included pressure and planar Particle Image Velocimetry (PIV) data downstream of the collapsible tube. The results indicate that the location of the largest collapse in the tube occurs close to the downstream end. In the oscillating regime, sections of the tube downstream of the largest mean collapse experience the largest oscillations in the entire tube that are completely coherent and in phase. At a certain streamwise distance upstream of the largest collapse, a switch in the direction of oscillations occurs with respect to those downstream. Physically, when the tube experiences constriction downstream of the location of the largest mean collapse, this causes the accumulation of fluid and build-up of pressure in the upstream regions and an expansion of these sections. Fluctuations in the downstream flow field are significantly influenced by tube fluctuations along the minor axes. The fluctuations in the downstream flowfield are influenced by the propagation of disturbances due to oscillations in tube geometry, through the advection of fluid through the tube. Further, the manifestation of the LU-type pressure fluctuations is found to be due to the variation in the propagation speed of the disturbances during the different stages within a period of oscillation of the tube.more » « less
-
This paper presents a comparison of several correlation-based methodologies for depth estimation using a single plenoptic camera. The plenoptic camera offers a distinct advantage by enabling the generation of many perspectives over a relatively small baseline. Unlike stereo reconstruction, which relies on a pair of images for depth estimation, these multiple perspectives are utilized collectively in two distinct approaches for depth estimation. The proposed methods are evaluated using synthetic and experimental data to assess their accuracy. Preliminary results indicate the robust performance of both methods, each exhibiting different strengths under varying conditions. Future work will assess how these methods perform in the context of a simultaneous DIC and 3D PIV measurement using a single plenoptic camera.more » « less
An official website of the United States government

Full Text Available